Probabilistic Method and Random Graphs
 Lecture 9. De-randomization and Second Moment Method

Xingwu Liu

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

${ }^{1}$ The slides are mainly based on Chapter 6 of Probability and Computing.

Comments, questions, or suggestions?

A Review of Lecture 8

- Principle of probabilistic method

Probability space

Nonzero probability
of satisfying the property

Existence

- Counting: Tournament, Ramsey number
- First moment method: Max-3SAT, MIS
$-\operatorname{Pr}(X \geq \mathbb{E}[X])>0, \operatorname{Pr}(X \leq \mathbb{E}[X])>0$
- Markov's inequality: $\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}$

$$
\operatorname{Pr}(X \neq 0)=\operatorname{Pr}(X>0)=\operatorname{Pr}(X \geq 1) \leq \mathbb{E}[X]
$$

A Review of Lecture 8

- How to find an desirable object? By sampling!
- Algorithmic paradigm

- First moment method guarantees efficiency
- Cool to get an efficient randomized algorithm
- Can we derive a deterministic one?
- Yes, if expectation argument is used

De-randomization: an example

- MAX-3SAT: Given a 3-CNF Boolean formula, find a truth assignment satisfying the maximum number of clauses
- Known: at least $\frac{7}{8} n$ clauses can be satisfied
- Randomized algo. to find a good assignment
- Independently, randomly assign values
- Succeed if lucky
- Can we make good choice, rather than pray for luck?

Look closer at the randomized algorithm

- In equivalence, choose values sequentially
- Good choices lead to a good final result
- Which choice is good?
- Easy to know with hindsight, but how to predict
- A tentative approach: always make the choice which allows a good final result
- Fact: a $\frac{7 n}{8}$ expect. means the existence of a $\frac{7}{8}$-approx.
- Make the current choice, keeping the expectation $\geq \frac{7 n}{8}$
- Nice, but does such a choice exist? How to find it?

Conditional expectation says yes!

- The first step
$-\frac{7 n}{8}=\mathbb{E}[X]=\sum_{v_{1}} \mathbb{E}\left[X \mid x_{1}=v_{1}\right] \operatorname{Pr}\left(x_{1}=v_{1}\right)$
- There must be v_{1} s.t. $\mathbb{E}\left[X \mid x_{1}=v_{1}\right] \geq \frac{7 n}{8}$
- Likewise, if $\mathbb{E}\left[X \mid x_{1}=v_{1}, \ldots, x_{k-1}=v_{k-1}\right] \geq \frac{7 n}{8}$, then $\mathbb{E}\left[X \mid x_{1}=v_{1}, \ldots, x_{k}=v_{k}\right] \geq \frac{7 n}{8}$ for some v_{k}
- Final correctness

$$
-X\left(x_{1}=v_{1}, \ldots, x_{m}=v_{m}\right)=\mathbb{E}\left[X \mid x_{1}=v_{1}, \ldots, x_{m}=v_{m}\right] \geq \frac{7 n}{8}
$$

- Given v_{1}, \ldots, v_{k-1}, what's the v_{k} ?
- Let $v_{k}=0$ or 1 s.t. $\mathbb{E}\left[X \mid x_{1}=v_{1}, \ldots, x_{k}=v_{k}\right]$ is maximized

Deterministic $\frac{7}{8}$-algorithm for MAX-3SAT

For $k=1 \cdot m$ do

$$
\begin{gathered}
x_{k}=\operatorname{argmax}_{v_{k} \in\{0,1\}} \mathbb{E}\left[X \mid x_{1}=v_{1}, \ldots x_{k-1}=v_{k-1},\right. \\
\left.x_{k}=v_{k}\right]
\end{gathered}
$$

Endfor

- Cool! And this approach can be generalized

De-randomization via conditional expectation

- Expectation argument \Rightarrow deterministic algorithm
- Basic idea
- Expectation argument shows existence
- Sequentially make deterministic choices
- Each choice maintains the expectation, given the past ones
- Only valid for expectation argument where randomness lies in a sequence of random variables
- What if the expectation is hard to compute?

Example: Turán Theorem

- Any graph $G=(V, E)$ contains an independent set of size at least $\frac{|V|}{D+1}$, where $D=\frac{2|E|}{|V|}$
- Expectation argument: the expected size of an independent set S is at least $\frac{|V|}{D+1}$
- Randomly choose vertices into S one by one
- Try the de-randomization routine

Idea of the algorithm (1)

- Choose valid vertices sequentially
- At step $t+1$, find u to maximize $\mathbb{E}\left[Q \mid S^{(t)}, u\right]$
$-S^{(t)}$: the independent set at step t
$-Q$: the size of the final independent set
- Hard to compute the expectation $*$
- It suffices to show $\mathbb{E}\left[Q \mid S^{(t)}\right] \geq \frac{|V|}{D+1}$ for any t

Idea of the algorithm (2)

- Note that $\mathbb{E}\left[Q \mid S^{(t)}\right] \geq\left|S^{(t)}\right|+\sum_{w \in R^{(t)}} \frac{1}{d(w)+1} \triangleq X^{(t)}$
$-R^{(t)}$: set of vertices away from $S^{(t)}$ by distance >1
- $X^{(0)} \geq \frac{|V|}{D+1} \Rightarrow$ it's enough if $X^{(t)}$ is non-decreasing - Can we achieve this?
- If at step $t+1, u \in R^{(t)}$ is chosen, $X^{(t+1)}-X^{(t)}=1-\sum_{w \in \Gamma^{+}(u)} \frac{1}{d(w)+1}$

Can it be nonnegative?

- $\mathbb{E}_{u}\left[X^{(t+1)}-X^{(t)}\right] \geq 1-\sum_{w \in R^{(t)}} \frac{1}{d(w)+1} \frac{d(w)+1}{\left|R^{(t)}\right|}=0$
- So, there is u s.t. $X^{(t+1)} \geq X^{(t)}$

A deterministic algorithm

- Initialize S to be the empty set
- While there is a vertex $u \notin \Gamma(S)$
- Add to S such a vertex u which minimizes

$$
\sum_{w \in \Gamma^{+}(u)} \frac{1}{d(w)+1}
$$

- Return S
- Paul Turán (1910-1976)
- Hungarian mathematician
- Founder of

Probabilistic number theory
Extremal graph theory
(in Nazi Camp)

Sample and Modify

Big Chromatic Number and Big Girth

- Chromatic number vs local structure - Loose local structure \Rightarrow small chro. number? - No! (Erdős 1959)
- One of the first applications of prob. Method
- Theorem: for any integers $g, k>0$, there is a graph with girth $\geq g$ and chro. number $\geq k$
- We just prove the special case $g=4$, i.e. triangle-free

Basic Idea of the Proof

- Randomly pick a graph G from $G_{n, p}$
- $\mathbb{I}(G)$: the size of a maximum independent set of G
- $\chi(G)$: the chromatic number of G
- With high probability $\mathbb{I}(G)$ is small
$-\mathbb{I}(G) \chi(G) \geq n$ implies that $\chi(G)$ is big
- With high probability G has few triangles
- Destroy the triangles while keeping $\mathbb{I}(G)$ small

Proof: $\mathbb{I}(G)$ is small w.h.p.

- X : the number of independent sets of size $\frac{n}{2 k}$
- $\operatorname{Pr}\left(\mathbb{I}(G) \geq \frac{n}{2 k}\right)=\operatorname{Pr}(X \neq 0) \leq \mathbb{E}[X]$

$$
\begin{aligned}
& =\binom{n}{n / 2 k}(1-p)^{\binom{n / 2 k}{2}} \\
& <2^{n} e^{-\frac{p n(n-2 k)}{8 k^{2}}}
\end{aligned}
$$

- Small if n is large and $p=\omega\left(n^{-1}\right)$

Proof: triangles are few w.h.p.

- $\mathcal{T}(G)$: the number of triangles of G
- $\mathbb{E}[\mathcal{T}(G)]=\binom{n}{3} p^{3}<\frac{(n p)^{3}}{6}=\frac{n}{6}$ if $p=n^{-2 / 3}$
- By Markov ineq., $\operatorname{Pr}\left(\mathcal{T}(G)>\frac{n}{2}\right) \leq \frac{1}{3}$
- Recall $\operatorname{Pr}\left(\mathbb{I}(G) \geq \frac{n}{2 k}\right)<2^{n} e^{-\frac{p n(n-2 k)}{8 k^{2}}}$

$$
\begin{array}{ll}
<e^{n} e^{-\frac{p n^{2}}{16 k^{2}}}=e^{n-n^{\frac{4}{3}} / 16 k^{2}} & \text { if } n>4 k \\
<e^{-n}<\frac{1}{6} & \text { if } n^{1 / 3} \geq 32 k^{2}
\end{array}
$$

Proof: modification

- $\operatorname{Pr}\left(\mathbb{I}(G)<\frac{n}{2 k}, \mathcal{T}(G) \leq \frac{n}{2}\right)>\frac{1}{2}$
- Choose G s.t. $\mathbb{I}(G)<\frac{n}{2 k}, \mathcal{T}(G) \leq \frac{n}{2}$
- Remove one vertex from each triangle of G, resulting in a graph G^{\prime} with $n^{\prime} \geq n-\mathcal{T}(G)$
- $\mathbb{I}\left(G^{\prime}\right) \leq \mathbb{I}(G)<\frac{n}{2 k}$
- $\chi\left(G^{\prime}\right) \geq \frac{n^{\prime}}{\mathbb{I}\left(G^{\prime}\right)} \geq \frac{n^{\prime}}{\mathbb{I}(G)} \geq \frac{n-\mathcal{T}(G)}{\frac{n}{2 k}} \geq k$

Algorithm for finding such a graph

- Fix $n^{1 / 3} \geq 32 k^{2}$ and $p=n^{-2 / 3}$
- Sample G from $G_{n, p}$
- Destroy the triangles
- Success probability > $1 / 2$
- Do you have any idea of de-randomizing?

References

- http://www.cse.buffalo.edu/~hungngo/classe s/2011/Spring-694/lectures/sm.pdf
- http://www.openproblemgarden.org/
- Documentary film of Erdős: N is a Number - A Portrait of Paul Erdős

Thank you!

